

Utah's New GIS Data Lifecycle

Matt Peters Greg Bunce

What's driving the new lifecycle?

- Better public access
- Internal-workflow conflicts
- Popularity of data as a service
- To focus efforts on data that is being used
- Bloated state GIS database

The current data lifecycle

JIZA

- SQL ESRI Enterprise Database
 - State network access only
- Combined editing and production DB
- Limited AGOL implementation
- Data download links on website
 - Using Google Drive
- FTP site remnants
- Imagery/basemaps on Google Cloud

Microsoft® SQL Server

SCHOOL DISTRICT BOUNDARIES

School Districts in Utah.

The following data is available for download:

Package Contents

Comments, questions, compliments, or concerns can be directed to the staff from AGRC at agrc@utah.govor 801-538-366	
Downloads	Updates
School Distrcts: Shapefile	March, 2017
School Distrcits: File Geodatabase	September 2017

Public access

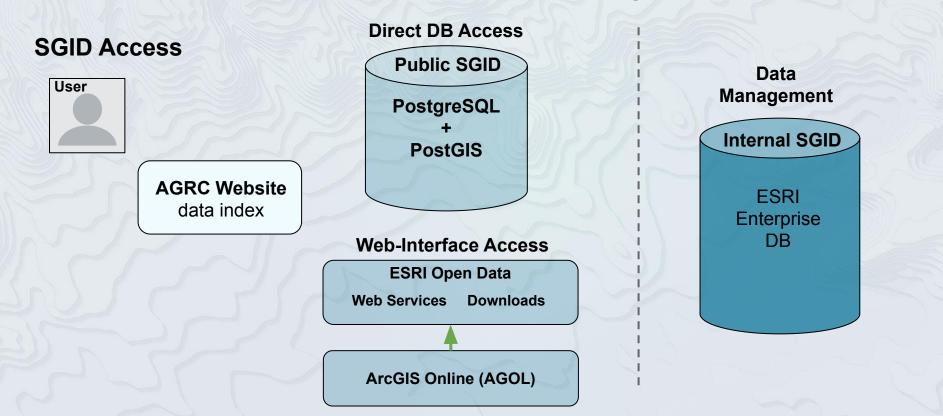
- PostgresSQL + PostGIS (Google Cloud)
- ArcGIS Online
- Open Data
- Internal data management
 - Allow in-house edits (internal ESRI DB)
 - Better workflow for pushing data to public
- Leveraging ArcGIS Online platform
 - o enable Open Data
 - rest services (geoservice, geojson)
 - data downloads
- Direct integration of agency data
 - ArcGIS Online
- Automated data QA/QC checks
 - Python scripts

ArcGIS Online

PostgreS

Public access

- PostgresSQL + PostGIS (Google Cloud)
- ArcGIS Online
- Open Data
- Internal data management
 - allow in-house edits (internal ESRI DB)
 - better workflow for pushing data to public
- Leveraging ArcGIS Online platform
 - enable Open Data
 - rest services (geoservice, geojson)
 - data downloads
 - Direct integration of agency data
 - ArcGIS Online
 - Automated data QA/QC checks
 - Python scripts



ArcGIS

Utah's State GIS Database (SGID) Diagram

Public access

- PostgresSQL + PostGIS (Google Cloud)
- ArcGIS Online
- Open Data
- Internal data management
 - Allow in-house edits (internal ESRI DB)
 - Better workflow for pushing data to public

puthon

- Leveraging ArcGIS Online platform
 - o enable Open Data
 - rest services (geoservice, geojson)
 - data downloads
- Direct integration of agency data
 - ArcGIS Online
- Automated data QA/QC checks
 - Python scripts

def sweep(self, lyr):

empty_count = 0

fields = ['OID@', 'Shape', 'SHAPE@'] # for poin
with arcpy.da.SearchCursor(lyr, fields) as Scur:
 print("Looping through rows in '{}' ...".for
 for row in Scursor:

bad_geom = False

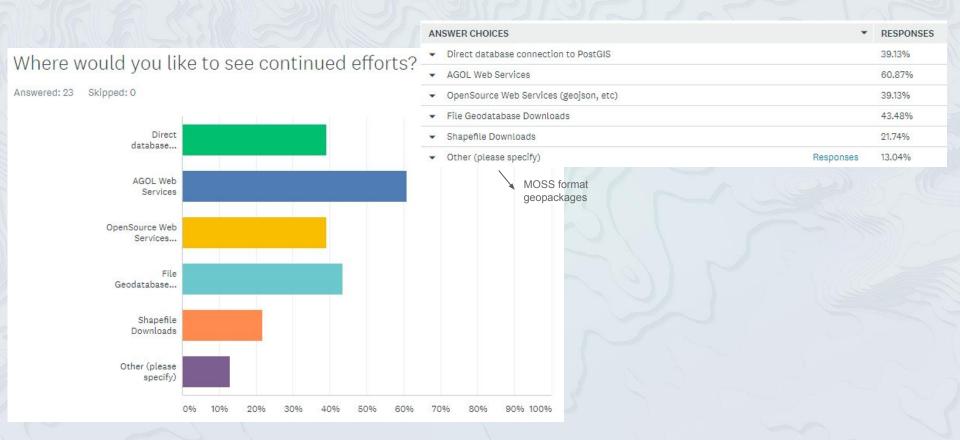
Check if geometry object is null
if row[2] is None:
 print(" OID {} has null (None) {
 bad_geom = True
 constructions (None) {}
}

Challenges

- Data latency
 - Speeding-up data being pushed to the cloud
 - VPN tunnel to Google
- Cloud vulnerability
 - Dependency on external platforms
 - Having less control of software updates and timing
 - AGOL
 - Open Data

Benefits

- Cut down on in-house storage
- Viable path to continuity of operation and disaster recovery
- Direct integration of agency data
- Cut down on data processing
 - Packaging and moving data around
- Better user access
 - Direct DB, web services, downloads
- Vertical Integration
 - Administrative boundaries (voting precincts)
 - Roads and address points
 - Municipal boundaries


Benefits

- Cut down on in-house storage
- Viable path to continuity of operation and disa recovery
- Direct integration of agency data
- Cut down on data processing
 - Packaging and moving data around
- Better user access
 - Direct DB, web services, downloads
- Vertical Integration
 - Administrative boundaries
 - Roads and address points
 - Municipal boundaries

User Poll

Read more about Utah's state geographic information database here: gis.utah.gov/sgid-then-and-now

Matt Peters (mpeters@utah.gov) Greg Bunce (gbunce@utah.gov)